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Abstract

After more than six years from the launch of Bitcoin, it has become ev-
ident that the decentralized transaction ledger functionality implemented
through the blockchain technology can be used not only for cryptocur-
rencies, but to register, confirm and transfer any kind of contract and
property. In this work we analyze the most relevant functionalities and
known issues of this technology, with the intent of pointing out the pos-
sible behaviours that are not as efficient as they should when thinking
with a broader outlook. Our analysis would be the starting point for the
introduction of a new approach to blockchain creation and management,
which will be the subject of a forthcoming paper.

1 Introduction

The existence of digital currencies is strictly related to the broad diffusion of In-
ternet and on-line markets. A digital currency is similar to electronic money but
even if it can be used to buy services or physical goods like traditional money,
it is not equivalent or linked to any fiat currency. The idea of using a digital
currency became realistic when some important developments in cryptography
settled multiple fundamental security challenges in money transfers, e.g. the
necessary trust in the transaction.

Several digital cryptocurrencies have been implemented in the last 20 years, but
only starting in 2008 the idea of a decentralized currency came out. In fact the
first implementations employed a point of control over the money supply, which
led to their failure since it exposed the whole system to attacks for taking con-
trol over it. This happened for both governmental and criminal interests [1, 2].
BitCoin [3] has been created to avoid a single point of attack, staying free of any
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central authority. It includes a peer-to-peer network, with both a distributed
currency issuance system and a transaction verification system, backed by a
public tansaction ledger called blockchain.

After more than six years from the its launch, it has become evident that the de-
centralized transaction ledger functionality implemented through the blockchain
technology can be used not only for cryptocurrencies, but to register, confirm
and transfer any kind of contract and property. For example, public records
such as vehicle registrations or marriage certificates could be migrated to suit-
able blockchains. Blockchain technology enables indeed the creation and man-
agement of smart contracts [4] and smart properties [4]. On the other hand,
these two new digital paradigms can be used to give rise to the creation of
decentralized autonomous organizations [5].

In this work we will consider the opportunities given by the blockchain,
analysing its most relevant functionalities and known issues. We will evaluate
the features specific to Bitcoin, with the intent of pointing out the possible be-
haviours that are not as efficient as they should when thinking with a broader
outlook. And we will consider some alternatives both in protocols and in sys-
tems, which represent the already available solution to some acknowledged flaws.
More in details: in §2, we will review some new potential applications, surveying
the actual tools that are already implemented and focusing on their functionali-
ties related to the blockchain. Then in §3 we will stress the role of the transaction
concept in the actualization of the blockchain, followed by an inspection of the
components used to manage the public ledger, with a special look at the case
of Bitcoin. A discussion on some computational aspects will be presented in §4,
where some serious inefficiencies will be highlighted. Finally in §5 we will draw
our conclusions on the blockchain-based system.

2 Potential applications

Considered as a public ledger, in its nature the blockchain is inclined to record
formal agreements between parties. This is the case when a contract must be
registered by a notary, or when the ownership of something must be publicly
advertised and recognized, or even when a property with some automatic be-
haviour could interact with another subject enforcing a contract. These are
loose examples - different from the original recordings of currency transactions
- that show some potential applications of the blockchain, assuming that we
properly switch the qualities of its records. This approach does not take into
account the inner functionalities of the underlying tools, but rather assumes it
is a secure and efficient system. In the following we introduce some interesting
real applications in this perspective, leaving other more complex cases to next
sections.



2.1 Smart contracts

Smart contracts represent the implementation of a contractual agreement, whose
legal provisions are formalized into programming code and verified through a
network of peers [6]. Indeed these contracts are defined through the code and
executed or enforced by the code, without the need for a trusted third party. An
example of a smart contract is the enforcement of a bet between two users about
the maximum humidity level tomorrow. On the following day the contract is
automatically completed by a software program checking the humidity levels
provided by a qualified weather service or some given sensors, as stated by the
contract itself, reading and trasferring funds from the loser’s to the winner’s
account. Another example is an inheritance gift that becomes available on the
childs eitheenth birthday. As should be clear from these examples, in order to
set up a smart contract one needs to choose an event or condition which triggers
the transaction expected in the contract, and then check with a program that
the event or condition has occurred.

According to [4], smart contracts represent a technological advancement to
the practice of law, which allow contracting parties to structure their relation-
ships more efficiently, in a self-executing way and without the ambiguity of
natural words. Given the reliance on source code, users can model contractual
performance and simulate the agreement effectiveness before its execution [6].

We can point out the following three distinctive properties of smart con-

tracts: autonomy, self-sufficiency and decentralization [7]. Smart contracts are
autonomous in the sense that, after their deployment on the blockchain, they no
longer need heed of their creators. Furthermore, they can accumulate capital
over time, such as digital currencies or physical assets, and that is what the term
self-sufficient stands for. Finally, smart contracts are decentralized because they
are distributed and self-executing across a network of peer nodes.
Some open source projects have been started in the last years to develop pro-
gramming languages for the easy creation of smart contracts (e.g. [8, 9]). Using
these programming languages, users will be able to get increasingly sophisti-
cated smart contracts, designed to satisfy various requirements and to be used
in several contexts.

Two main current projects related to smart contracts are Namecoin and
Ethereum. We are going to discuss them briefly in the following, in order to gain
some insight on goals and functions in this kind of blockchain-based systems.

2.1.1 Namecoin

Currently, the mapping between IP-addresses and the names of devices and ser-
vices over the Internet implemented through the Domain Name Service (DNS)
is supervised by the ICANN [10]. ICANN is a central authority whose main
task is to establish the top-level domain names (TLD) (e.g. “.com”, “.it”, etc.),
and which third party companies, known as registrars, are permitted to manage
names in each TLD. In fact each registrar deals with accepting domain name
orders and customer’s requests for Internet services in the TLDs of its compe-



tence.
Government agencies could contact a registrar and induce it to blacklist some
devices and services, for the purpose of political censorship. The extent of Inter-
net censorship varies on a country-to-country basis: most democratic countries
have moderate Internet censorship, whilst other countries go as far as to limit
the access of information and suppress discussion among citizens [11].
Namecoin [12] is a blockchain-based DNS that — at least in the intentions of
its designers and promoters — cannot be controlled by any government or orga-
nization. A blockchain-based DNS system means that DNS lookup tables are
recorded on a blockchain and shared this way on a peer-to-peer system, so that
naming in TLDs can be managed cooperatively by customers, without control
by any registrar. Since domain name registration is nothing else than a special
kind of contract between a registrar and its customers, Namecoin is a service for
supplying smart contracts which is based on the Bitcoin cryptocurrency. Name-
coin has the unique TLD .bit, and domains can be registered directly with the
Namecoin system or via registration services like https://dotbit.me/. Since
.bit is not managed by ICANN, in order to resolve names within Namecoin
tables, one must set up a .bit proxy server for the correct handling of those
DNS requests.

2.1.2 Ethereum

The newly introduced Ethereum platform is a blockchain-based system aimed at
running applications exactly as programmed, without any possibility of down-
time, censorship, fraud or third party interference [13]. Ethereum, by imple-
menting a generic programmable blockchain, enables the execution of state-
ful, fully-customizable smart contracts. Some examples of applications that
Ethereum can be used for are: voting systems, domain name registries, financial
exchanges, crowdfunding platforms, company governance, intellectual property
and smart property (see §2.2).

Ethereum can be described as a virtual machine which makes use of a
blockchain with a built-in programming language for developing and deploy-
ing distributed applications [13]. What takes care of the internal state and the
computations as specified in the blockchain is indeed the so-called Ethereum
Virtual Machine (EVM). Basically, the EVM works in the same way as any
other virtual machine: it takes some high level programming language designed
for writing smart contracts, and compiles it into EVM bytecode that the com-
puter, on which it runs, understands. The EVM can be thought of as a large
decentralised computer containing millions of objects called accounts. Accounts
have the ability to maintain an internal database, execute code and talk to
other accounts. A smart contract is itself an account. FExternally owned ac-
counts (EOASs) are controlled by private keys: if you own the key belonging to a
given EOA, you have the ability to send ether — the Ethereum’s cryptocurrency
— and messages from such EOA to other accounts in the system.



2.2 Smart properties

Beyond smart contracts, blockchain technology enables the creation of smart
properties. The key idea of smart property [14] is the assertion of ownership
rights for an asset through its registration in the blockchain, secured by means
of a private key. Only who has got the private key can ascertain its ownership
of the asset, which on the other hand can be verifed by anyone thanks to the
corresponding public key. The owner could later sell the asset by givig its
corresponding private key to another user, e.g. through the completion of a
smart contract.

Some types of property like trademarks, copyrights and patents are inher-
ently smart properties, and their management as such is natural and can be
fruitful. Indeed these entitlements can be easily encoded and processed as dig-
ital documents. This is not the case with physical assets, where ownership is
more exposed to frauds. In fact in order to register a chattel (e.g a car) in the
blockchain, we need to attach a uniquely identifiable tag or a chip to it. If the
information contained in that tag or chip could be altered, or the tag/chip could
be detached, smart property would not be guaranteed.

An actual implementation of smart properties is colored coins. Using this
term we are talking about a class of methods for representing and managing
real world assets on top of the Bitcoin blockchain. In fact it is possible to store
a small amounts of metadata on the blockchain to represent asset manipulation
instructions. One can encode in a Bitcoin transaction the information that some
units of a new asset were issued and credited to a given Bitcoin address, and
a real world value can correspond to those units with the issuer’s promise to
redeem them for some goods or services. For example, a car dealer can issue
100 units of a “Buy car X during the time promotional period Y” asset, and
promise to redeem each unit for a right to buy a certain kind of car as part of
a promotional offer [15].

2.2.1 Proof of Existence

An interesting implementation of the smart property concept in the context of
autorship protection is Proof of Existence [16]. Proof of Existence is a web-based
service used to prove the authorship of things such as software or documents.
This tool demonstrates document ownership without revealing the information
it contains, and it can be used to prove that a document was created at a certain
time. When a user requires the proof of existence for a given digital document,
the service does not record the content of the document but instead computes a
digest of its content thanks to a cryptographic hash function. Later, that digest
is inserted into a block of the blockchain, and the block timestamp becomes
the document timestamp. If a user tries to insert a modified version of the
same document, a new digest is created which — with overhelming probability
— will be completely unrelated to the previous one, because of the properties of
cryptographic hash functions.



2.3 Decentralized autonomous organizations

The blockchain technology makes the execution of several smart contracts and
smart properties possible, enabling their reciprocal interaction in a decentral-
ized and distributed way. Decentralized autonomous organizations [5] operate
according to rules and procedures defined by smart contracts, and on the basis of
ownerships defined through smart properties. In these organizations, machines
and people can cooperate without the need to be incorporated into traditional
business identities.

The decentralized autonomous organization concept derived from Artificial
Intelligence: a decentralized network of autonomous agents perform tasks, which
can be conceived in the model of a corporation running without any human
involvement under the control of a set of business rules. Such organizations
can charge users for the services they provide, in order to pay others for the
resources they need. As long as they receive sufficient funds to operate on their
own, they can thus subsist independently of any third party. If a decentralized
organization is truly autonomous, no one (including its original creator) can
control it after it has been deployed on the blockchain. That is actually a very
threatening property: an organization could be conceived to evolve over time in
order to adapt to the context in which it operates, thus it can be very difficult
to know a priori if it can assume a dangerous state.

From a different point of view, the concept of decentralized autonomous
organization can actually be linked to the development of the Internet of Things
(IoT). The IoT will consist of billions of Internet-enabled devices, but not all can
be blindly trustworthy and some could be even malicious. In order to facilitate
private, secure, and (trustless) machine-to-machine coordination, these devices
will need a central reference point. In this context the ADePT (Autonomous
Decentralized Peer-to-Peer Telemetry) [17], by IBM and Samsung, is building a
proof of concept system for the next generation of the IoT.

2.3.1 ADePT

The ADePT concept [17] uses blockchain technology to provide the backbone
of the system, utilizing a mix of peer-to-peer protocols to get secure and fault-
tolerant transactions. In ADePT, the blockchain is seen as a way for devices to
understand what other devices do, and the instructions and permissions different
users have around these devices. In practice this can mean tracking relationships
between a user and a device, and even between two devices, with the consent of
the user.

In order to realize the ADePT concept, IBM and Samsung chose three pro-
tocols:

e Ethereum, in order to allow devices to understand contracts and capa-
bilities (this is where blockchain technology comes into play);

e Telehash [18], a private messaging protocol used to share information
among two or more devices;



‘ Symbol | Meaning || Symbol | Meaning |
T Transaction M Miner
I Transaction input R Recipient (payee in cryptocurrency)
O Transaction output P Transactor (payer in cryptocurrency)
B Transaction block N Solution of mining (nonce)
H Block header T Difficulty of mining (threshold)
D Digest v Pseudo-random function
D Root hash (aka root digest) || II Pricing function

Table 1: Special symbols used in the present work.

e Bit Torrent [19] a file sharing protocol used to move data around also in
case of discontinuous and unreliable connections

According to [20], a Samsung W9000 washing machine was reconfigured
to work within the ADePT system. When needed, the machine uses smart
contracts to issue commands to a detergent retailer in order to receive new
supplies. Thanks to these contracts the device has the ability to pay for the
order itself, and later receive a notice from the retailer that the detergent has
been paid for and shipped. Moreover, if a smartphone is connected to the home
network, this information is broadcasted to it, presenting the purchase details
to the owner of the washer.

3 Concepts and technologies

Since January 2009, when Bitcoin v0.1 was released and announced on a cryp-
tography mailing list, there has been a growing interest on cryptocurrencies
from various communities related in some way with Information Technology.
In this section we will try to describe the main technical aspects at the basis
of what we called “blockchain-based systems”, at the current state of the art.
Before going into details it can be useful to recap Bitcoin’s basic strategy by
sketching its main operations. This can serve as a guideline before our diving
into the technicalities, and we hope it will induce the reader to focus on the
functional requirements pursued by the designers of these systems, rather than
on their actual implementations. Table 1 reports the main special symbols used
throughout the following, alongside with their meaning.

3.1 Bitcoin quick overview

In the Bitcoin network, special nodes called miners collect transactions that
are broadcasted over the network, and use their computing power to try to
generate a valid block of transactions. The generation is done through repeated
invocation of a hash function on data which reference the specific transactions
that a miner decided to include in its block, together with the previous valid
block and its own Bitcoin address. Then a public ledger, which consists in



a chain of such blocks, is cooperatively and incrementally constructed by the
miners over time, as follows:

e When a miner succeeds in generating a block, meaning that the hash of its
block data is smaller than a given difficulty threshold, then it broadcasts
such block to the network.

e In case other miners see that the above block is valid, and see that it is
the longest extension of the blockchain that they are aware of, they move
on and extend the blockchain from such block.

e The existence of the above block in the blockchain ratifies that the newly
minted coins and the fees from the transactions included go to the public
address that it provided. Only the miner having that address can redeem
such coins and transaction fees, by using its corresponding private key.

At the same time, the synchronization among peers and the creation of new
coins are managed by the system in a way that:

e The difficulty level readapts to the total hashing power of the miners. This
is done by updating the hash threshold value every 2016 blocks, so that
so many blocks get generated in about two weeks (i.e. each new block is
generated every 10 minutes on average).

e The reward in newly minted coins started at 50 coins in January 2009 and
halves every 210,000 blocks, i.e. about every 4 years (see above).

3.2 Transactions

At its core, a cryptocurrency is a chain of digital signatures reflecting the coin’s
paths through the system. A key concept in this context is that of transaction,
which has an effect similar to a wire transfer between bank accounts. Actually
it is a data structure which represents a single addressable unit of a block, which
in turn is the single addressable unit of the blockchain. There are two different
types of transactions: standard transactions, which encode one or more coin’s
transfers from some transactor node to one or more recipient nodes of the sys-
tem, and generation transactions, where newly generated coins are granted by
the system to miners, as a reward for their effort in building the blockchain.
Every amount of currency which results from a transaction is seen as a pack
of coins which can be fractionated only through another transaction. Indeed a
standard transaction does not record a single fund transfer from one point to
another, but rather represents a scheme with multiple amounts which must be
balanced: the number of coins - possibly collected from different packs - repre-
senting the requested amount for a given transaction must match the number
of coins made available for the possible multiple recipients. In fact also the
transactor itself can be considered the recipient of the eventual change, which
represent a new smaller pack of coins.



This way parties can more easily keep track of paths followed by coins
through the system, and monitor the integrity of the service. Actually, many
systems include (optional) transaction fees for miners, so that the above balance
is achieved by including these fees, even if their payee is not known beforehand.
Indeed, a transfer for a transaction fee cannot be explicitly recorded in a stan-
dard transaction, since its recipient will be known to the system only afterward,
resulting as the winner of a computational challenge (see §3.3). Therefore these
fees must be included in the amount of the transaction, but they are not explic-
itly recorded in the transaction itself.

The specification of a transaction requires an addressing scheme so that

transactors, recipients and miners (that is, ultimately, each node in the system)
can be univocally identified. Moreover, transactions must be uniquely binded
to transactors, in a way that - at least in theory - neither a party different from
the transactor P can generate a transaction indicating P as transactor (authen-
ticity), nor P can repudiate a transaction which it has previously generated
(non-repudiation).
Transactions are processed locally by each node thanks to a programmable in-
terface implemented in the peer-to-peer software. Since that interface makes
use of a scripting language (e.g. [24, 9]), we will refer to the code for processing
a transaction as the transaction script. The ultimate goal of a transaction script
is allowing any other node in the system different from the transactor node to
ascertain what are the conditions for the occurrence of transfers reported in the
given transaction. That is accomplished through the signing and the verifica-
tion procedures of a suitable digital signature scheme on some elements of the
transaction.

These notions were first introduced for Bitcoin [3], and then adopted by
many other cryptocurrency systems to date [22]. They can be easily adapted to
perform transfers of any resource which admits a suitable, appropriate digital
representation. Thus, by definition, we will assume that this approach specifies
how resources are managed in any blockchain-based system.

3.2.1 Addressing

Since the validation of transactions relies upon digital signatures verified by
system nodes, and nodes are implemented through a special software termed
wallet, then there must be a mapping between wallets and (sets of) signature
verification keys.

Signature verification keys are often linked to identifiers or pseudonyms valid
only in the system context, called addresses, rather than real-life names and
identities as in public-key certificate (PKC) based infrastructures [25]. This way,
no trusted third party is required to ascertain the real identities of people and
devices involved in the system; moreover, users can hope for some anonymity.
Users’ anonimity is a (controversial) feature aimed by many cryptocurrencies,
and this is one reason for the possibility to have different user identifiers as-
sociated with the same wallet. Actually, verification keys could be used by



themselves as addresses in the system, since for their purpose they must be
kept publicly available. However, this approach is inappropriate if non-volatile
addresses are required, since key management imposes practices such as key
upgrading and key revocation [26]. These considerations do not seem to have
influenced the designers of Bitcoin and many other blockchain-based systems,
where addresses are obtained as hash digests from verification keys, apparently
at the sole scope of obtaining shorter identifiers [27]. For example, Bitcoin ad-
dresses are baseb8-encoded strings containing an address version number, the
digest got by hashing an ECDSA [28] verification key with the RIPEMD-160
algorithm [29], and an error-detection checksum to catch typos [27].

3.2.2 Transaction inputs and outputs

As we told previously, the scope of a transaction is to keep track of the resource
paths (both the granting of new resources and resource transfers) occurring
among system nodes. In this way each node can verify the amount and address-
ing of the newly created resources, as well as the balance between resources
requested for the transaction and resources transferred to recipients. In or-
der to accomplish that, a transaction encodes those amounts as suitable data
structures, called transaction inputs and outputs, respectively.

A transaction input composes of data indicating the source of the resources

that a transactor P wishes to transfer, plus a scripting code whose processing
should guarantee to every node in the system that P is actually authorized to
redeem per se those resources.
Similarly, a transaction output composes of the indication of the destination
where P intends to transfer those resources and their amount, plus a scripting
code whose processing should guarantee that only the system nodes indicated
by P as the recipients can actually redeem such resources.

Each input must match with an output related to a previous transaction
which was validated (eventually among others) as a blockchain block. The
matching between the current transaction input I and a previous transaction
output O trasforms all the resources provided by O in resources available for I, so
that to each input can correspond one and only one output. A different situation
occurs inside a transaction, where zero to many inputs can be associated to
one or more outpus. A no-input transaction stands for granting some newly
created resources to one or more outputs, and corresponds to the case of a
generation transaction in the context of cryptocurrecies. Otherwise, a single- or
multi-input transaction records a transfer of resources from its input(s) to its
output(s). The matching rule in this last case is as follows: one or more outputs
Oppn, must correspond to each input I,,, so that a certain amount of units of
resource provided by I, is equal to the sum of the amounts related to O,,,, net
of transaction fees which cannot be indicated explicitly.

As result of the two above matching rules, resource paths start at outputs of
generation transactions and from standard transaction inputs they branch into
one or more ouputs, or from multiple transaction inputs they join into a single
output. Figure 1 shows an example of a chain graph for resource transfers which
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Figure 1: An example of transaction chaining in Bitcoin.

meets such rules.

In Bitcoin, each standard transaction — with its input(s)-output(s) matching
— represents a transfer of a certain amount of sathoshi, which is the smallest
possible unit of currency®. Each input I must reference a single output O from
a transaction encoded in a previously validated transaction block, so that I
must spend the amounts of satoshi in O. Schematically, given a transaction T,
each input I and output O of T are defined as:

I := (sha256(T},), i, SgnCode) O := (v, VrfCode) , (1)

where:

sha256(T),) is the SHA-256 digest of a previous transaction T,. It is used to
identify T}, as the transaction used to get input I;

the input index i is a non negative integer which indicates the specific output
in T}, used as an input in the current transaction T

the signing script SgnCode is a set of instructions and data provided by the
transactor in order to satisfy the conditions placed in the pubkey script
of output ¢ in T},. In its simplest form, such script just applies the trans-
actor signature on the SHA-256 digest of all the I/O fields of the current
transaction, with the exclusion of SgnCode itself;

- the output value v is the amount of satoshis associated with O;

LA satoshi is a one hundred millionth of a single bitcoin (BTC)
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79d2a9f4b0eadb009cf4d50b9£739693a73c0d7d6d2

"hash": "a44d97e0290a7979d2a9ff4b0ea4b009cf4d50b9£739693a73c0d7d6d297e650",
"ver": 1,
"vin_sz": 1,
"vout_sz": 2,
"lock_time": O,
"size": 223,
"in": [
{
"prev_out": {
"hash": "98ad911be7f£50439110e402745£49bb42e9fdc3b722198b96£d442915392ed6" ,
npte
Ps
"scriptSig": "30440220362feb8862be8e89442856cc69ac6e8094a2260a76e34fef2c7cd99\
c5f41bbed0220070bde5c073b63427fa211261da8bd5343d31fdeef5a885ed6\
74e816e4cf463a01033c586247alabbbf 1f3895adaee521b20chb 596948278\

1d0c71dadd8c0d26fad1"
s
1,
"out": [
{
"value": "608.90406349",
"scriptPubKey": "OP_DUP OP_HASH160 fa6b6e87bd2a264e001ce6ddfce39499d269ade2\
OP_EQUALVERIFY OP_CHECKSIG",
"address": "1Pq6dSvv4UoJ1nC8L2TgWyKzVUMfeCHpPK"
¥
{
"value": "0.18040121",
"scriptPubKey": "OP_HASH160 f5c9e9ed35bb7405bbd4c1f3c3aecebl17232£663b OP_EQUAL"
}

1,

"nid": "934d7bc180e7c88699e89a65b5ce50022400a4ce8dc7c66adfd658ccf95de985",
"block": "00000000000000000ca23d66664e258fff1293987d1302b8d6e5dcee26b92cd5",
"blocknumber": 380336,

"time": "2015-10-24 12:53:20"

Figure 2: An example of Bitcoin standard transaction.

- the pubkey script VrfCode is a set of instructions and data provided by the
transactor that specifies the recipient(s) authorized to collect the value
v in satoshi associated with O. The most used VrfCode returns true if
matched with a signing script consisting in a signature of a (subsequent)
transaction (see §3.2.3).

An example of Bitcoin standard transaction in row encoding format is given
in Figure 2. The transaction, identified by the SHA-256 hash indicated at the
top of the frame and listed in line 2 of the code, takes a single input I (coded in
the "in" section) and converts it in the two outputs O listed in section "out".
I is identified by the hash and n fields given in lines 11-12, which correspond
to the SHA-256 digest and index of a previous Bitcoin transaction. The first
output transfers a value of v = 60890406349 satoshi to the Bitcoin address given
by 1Pq6dSvv4UoJ1nC8L2TgWyKzVUMEeCHpPK, whilst the second output redeems
v = 18040121 satoshi to the transactor. Some of the lines of code shown in
Figure 2 are not recorded as such in the blockchain, but they are rather the
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result of some processing by a blockchain browser, a web tool designed to offer
human-readable views of a blockchain (e.g. [30, 31]). For example, values are
expressed in BTC in the code of Figure 2, whilst they are recorded in satoshi
in the blockchain. Moreover, the field blocknumber is not actually recorded in
the blockchain [32].

3.2.3 Transaction processing

In order to be validated without the intervention of a trusted third party, trans-
actions require some processing at the peer nodes to ascertain with corroborate
evidence: their origin (i.e. the identities of their transactors), the fact that the
resources deemed to be transacted are effectively possessed by the transactors,
and — last but not least — that only the recipients satisfying the conditions re-
quired by transactors are accounted for such resources.

A key point in Bitcoin, and more generally in blockchain-based systems, is that
transactions include code that can be customized by the transactor in order to
allow for different kinds of verification procedures.

To verify that inputs are authorized to collect the values of referenced out-
puts, Bitcoin uses a scripting system which resembles to Forth []. With reference
to Figure 2, the input’s SgnCode (denoted as scriptSig in the code) and the
referenced output’s VrfCode (scriptPubKey) are evaluated, and the input is au-
thorized only if scriptPubKey returns true. Through the scripting system, the
transactor can create many different conditions that peers have to meet in order
to claim the output’s value. For example, it’s possible to create outputs that
can be claimed by anyone without any authorization, or that require multiple
signatures, or that can be redeemable with a password instead of a key.

A similar approach is used in the other blockchain-based systems to date,

although some differences exist in the scripting system used, and in the way
transaction processing takes place.
Particularly relevant seems in this respect Ethereum (see §2.1), which uses its
own digital coin, called ether, to “fuel” the execution of applications stored on
its blockchain. Fueling is designed as a way to pay for the execution of Ethereum
bytecode and storage of data on the blockchain. How much a specific compu-
tation will cost is defined by the complexity of the computation in term of its
basic operations, as follows. Basic operations such as addition, subtraction and
multiplication cost one “unit of gas”, as indicated by the parameter GASPRICE;
at the moment of writing GASPRICE = 1076 ether. The Ethereum virtual ma-
chine (EVM), after the compilation of the code related to a given transaction,
computes the amount NUMBAQPS of its basic operations and fixes the total cost
for the transaction as:

TRANCOST = NUMBAOPS * GASPRICE 4 STARTGAS ,

where STARTGAS is the initial value of (units of ) gas at disposal of the transactor.
Coherently with the above approach, a transaction on the Ethereum blockchain
contains six fields. Three such fields have the same meaning than in Bitcoin:
they are the recipient of the transaction (be it a user or a smart contract), the
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signature of the transactor, and the amount of ether to send with the trans-
action. The three other fields are the STARTGAS and GASPRICE values, plus an
optional data field.

Notice that each transaction is limited on the number of computational steps
for the code execution it can generate, since those steps are proportional to the
transaction cost in ether. If a transaction execution “runs out of gas”, then
all state changes revert except for the payment of the fees; conversely, if the
execution halts with some gas remaining, then the remaining portion of the fees
is refunded to the transactor.

One of the high-level programming language used to write Ethereum contracts
is termed Serpent [8], which was designed to be very similar to Python. Unlike
the Bitcoin scripting language Script, Serpent is Turing-complete [33]; infinite
loops in code can indeed be avoided thanks to the fueling mechanism.

3.3 The blockchain technology

As we have seen in the previous sections, blockchain-based systems use digi-
tal signatures in order to guarantee the proper attribution of each transfer of
resources. However, one main concern for such systems is that of protecting
a chain of transfers like that depicted in Figure 1 from tampering. The prob-
lem arises since such chains are built incrementally by a network of peer nodes,
without the support of any trusted third party. Actually, neither miners nor
transactors can be trusted, since each of them could cheat in order to get more
resources or to avoid that other parties get the resources they deserve.
Suppose, just to fix ideas, that the system goal is to manage payments for the
purchase of goods within a set of parties, where each party can play both the
roles of buyer and seller?. Then, obviously, the sellers want to be assured that
payments that were agreed with the buyers — as recorded in the transactions —
cannot be declined by the buyers themselves at a later time, when goods have
already been shipped. One main question arises in this respect: can a chain of
digital signatures protect sellers from buyers who cheat?
The answer is affermative in theory, even if this solution is not currently imple-
mented. Indeed a seller R can protect herself from attemps to alter a transaction
Tp in her favor if she creates a subsequent transaction Tr which redeems per
se the money provided by Tp. Therefore, the only way for P to alter Tp is to
collude with R, since only R can generate the input of Ty, and such input must
match with the output of Tp.
Thus, the chains of standard transactions illustrated in §3.2 can protect against
the so-called double-spending problem, where malicious users try to transact
some resources (the same digital coins, in the context of cryptocurrencies) twice
or more.

Things get more complicated if the system has to provide for the creation of
new resources (e.g., the coining of money): to which node(s) should in this case

2That is, actually, similar to the application scenario for cryptocurrencies, but without the
issue of coining new currency (i.e. we are assuming that the system only manages money
transfers)
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the new resources be granted? And how to account such grants in the system?

The idea in Bitcoin was to assign the task of assessing the correct matching

of standard transactions to special nodes called miners, and to reward miners
for their work with some (optional) transaction fees plus new generated coins.
Thus, each miner must associate a generation transaction to the processed stan-
dard transactions. Hence standard transactions are grouped together so that
they refer to the same generation transaction, thus the miner could eventually
be awarded with newly generated coins and relative transaction fees (see §3.2).
Moreover, it is better to group several standard transactions together, since the
network overhead could eventually grow in an unfeasible way if many transac-
tions ensues.
Following this idea, the “unit of mining” becomes the transaction block, a data
structure grouping one or many standard transactions (by one or more trans-
actors) with a single generation transaction. This is where the blockchain tech-
nology comes into play.

To put it simply, the blockchain technology consists of a data structure (the
blockchain), plus a protocol for managing the creation of new transaction blocks.
The goal pursued with this technology is to have a public ledger of transactions
built over time thanks to the miners, and whose consistency and authenticity
can be monitored by any node in the peer-to-peer system, without any central
authority.

However, the shift from single transactions to transaction blocks exposes

again the system to double-spending problems. Indeed, in the context of an
organization of recorded data in transaction blocks, chains of transfer paths
cannot be easily managed and validated through digital signatures as described
in §3.2. To overcome this difficulty, the designer(s) of Bitcoin introduced a new
chaining mechanism, in this case between different blocks.
Roughly speaking, it consists in inserting a cryptographic hash digest related
to the preceding block in the current block. Since a cryptographic hash digest
is supposed to correspond univocally to its originating data with overhelming
probability, then the above approach results in the circumstance that any tam-
pering in a given block involves changes in all its subsequent blocks. This way,
in order to achieve its purpose, a malicious miner has to be faster than the hon-
est miners in mining transaction blocks. Therefore the double-spending threat
is mitigated by making the mining of a transaction block a costly operation.

Overall, the management of the blockchain - that is, the collection of new
transactions and their insertion upon validation in the chain of previous blocks
- is a process composed of the following steps:

1. Collecting incoming transactions into new blocks;
2. Mining of new blocks;
3. Blockchain updating.

All the above steps are performed by miners thanks to suitable client software.
This software enforces protocol executions using cryptographic mechanisms as
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Figure 3: Collecting new transactions into blocks.

preventive and detective controls, and implements the decision-making process
required at step 3 through a kind of consensus expressed by the nodes involved
in the system. The following sections discuss each step in detail. The core
protocol for the construction of a blockchain is illustrated in Figure 3.

3.4 Collecting new transactions into blocks

It’s a miner task to collect new transactions that are taking place on the network
in the same time , and to assemble these transactions into a transaction block.
In Bitcoin and other cryptocurrencies, miners are totally free to choose which
transactions to include in their blocks. Most miners will consider any transac-
tion that reaches them over the network, assuming it includes an appropriate
fee, but nothing forces their choice. This freedom is intended to get resilience
and performance of the system in case of network delays or faults, since new
transaction broadcasts do not necessarily need to reach all miners, nor a miner
has to wait for a minimum of transactions in order to start on working on a new
block [3, 27]. Actually, it could be also the case that a miner with malevolent
intentions will decide to mine a block composed of just the generation transac-
tion, with the purpose of having a greater chance of getting that block inserted
in the blockchain. As we will see later, there are very few deterrents to a such
bad behavior, that would eventually result in lack of faith in the system (see
83.6).

There is, however, an upper limit to the size of a transaction block, which is
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currently 1IMB in the Bitcoin system [32]. Such limit was chosen as a tradeoff
between constraints on peers resources and the throughput of the transaction
management: a bigger limit would result in less nodes being able to mine or
validate a full-size block, whilst a smaller limit would imply less transaction
throughput [34].

In Bitcoin, the standard transactions Ti,...,T, that a miner M chooses
to assemble into the current mining block B, — alongside with the generation
transaction Ty — are processed by M in pairs?, in order to calculate a unique
hash digest D, for all of them (root hash) thanks to a Merkle tree [35]. The
hash function used to generate the Merkle tree is SHA-256 [36], thus D, is a
256-bit string. The root hash is then recorded in the so-called block header H. of
B,, alongside with the digest D,, of the block header H,, of the previous (valid)
block B, , where D, is computed by applying twice SHA-256 to H,. Besides
the 256-bit fields provided for storing D, and BC, a block header consists of
the 32-bit fields version, time, bits and nonce for a total of 80 bytes. The
first three fields store the block version number, the current time in seconds
since 1970-01-01T00:00 UTC and a string encoding the difficulty of the proof-
of-work, respectively. Instead, the nonce field is used to store (part of) a string
representing the solution given by M to the proof-of-work (see §3.5) for B,
[37, 38].

Notice that if a miner generates a block with one or more invalid transactions,
whatever the error and the intentions are, then the other (honest) miners will
not accept the new block. They will ignore it and continue trying to build a
block on top of the last block they think is valid.

3.5 Mining of new blocks

In one form or another, mining is at the heart of any current blockchain-based
system. Mining is indeed the way the system imposes a computational cost
for the recording of new transaction blocks into the blockchain, so to mitigate
the double-spending threat. An important point to stress here, since often
misunderstood, is that the goal of a mining protocol does not actually consist
in the determination of the miner in charge of block recording, but rather of the
set of miners that are eligible for recording a new block in the blockchain (see
83.6).

The mining protocol chosen in Bitcoin is similar to the (partial inversion)
proof-of-work as described in [39], even if in this meaning it has new character-
istics and purpose.

In a proof-of-work, a prover demonstrates to a verifier that she has performed
a computational work in order to gain access to a resource. The original appli-
cation for this type of protocols was in the context of being able to deter spam
email, and the main idea was to require the prover to solve a moderately hard
but easy to verify computational problem tied to a particular email message
[40]. That is conceptually like affixing a postage stamp to a message: for a

3If h > 0 and h + 1 is odd, then T}, is considered twice.
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legitimate sender who is only sending out a small number of messages such type
of proof will not amount to very much computational effort, but for a spammer
it might be prohibitively expensive.

The proof-of-work implemented in Bitcoin consists in the search for a peculiar
hash digest D, calculated applying two subsequent SHA-256 to H, such that

D = sha256(sha256(H)) < 7, (2)

where T is fixed by the system in a way that we will see later in this discussion,
and H is the header of the block of transactions collected by miner M. As seen
in §3.4, H consists of the same kind of double-hash digest D,, of the previous
valid block header H,, the root hash D of the transactions collected by M in
the current working block B, the nonce field, and other minor fields. The nonce
field is 32-bit long and is used for storing (the first part of) a string N which
the miner has to find in order to satisfy condition (2).

With the introduction of special purpose hashing hardware (see §4.1) the nonce
field in the header has become too small, and the workaround was to have an
extraNonce field in a generation transaction so that a solution N has to be
found in a much larger string space. This makes the proof-of-work more costly
and involved, since M must recompute the root digest D each time it changes
the extraNonce string [38].

The solution N of the proof-of-work is called nonce; the term was inspired by
[41] and refers to the fact that, because of the properties of a cryptographic hash
function, N behaves as a pseudo-random string as one or more of the proof-of-
work’s parameters change.

A miner M to succeed in the search for a D satisfying (2) will write N in the
nonce and extraNonce fields of its working block B, and will broadcast B to
the other peers for verification. The other miners in the system express their
acceptance of the block by starting to work on the creation of a next block in the
chain, therefore they use the digest D of the accepted block as one component
of the block header of the new working block, as previously described.

Now the point is to understand how 7 is fixed. Practically, the goal of
finding a D < 7 corresponds to the goal of finding a D such that it has a certain
number of zeroes as first Hex digits. A SHA-256 digest is always 32 bytes or
64 hexadecimals long, so the probabilistic difficulty of the goal increases as this
number of Hex zero digits increases, and therefore it increases inversely as T
decreases.

For example, if we need digests beginning with fifteen zeroes like:

00000000000000016669a13b095€96db41c4a928b97e f2d944a9b31b2ccTbdc4,
then 7 will be the integer number whose Hex representation is given by:
0000000000000010000000000000000000000000000000000000000000000000.

More generally, if we need digests having z leading zeros, then 7 will be the
integer coded by the Hex string of all zeros except the digit “1” in the z-th
position.
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As we are going to better explain in §4, Bitcoin’s proof-of-work is a way to get
a valid and reliable transaction processing by ensuring that a set of peer nodes
(the miners) compete in solving a computational challenge within a preset time.
However, the problem to be solved is a kind of artificial puzzle of no practical
concern (besides, of course, the existence of the network), which requires an
increasing amount of computational resources over time, and where miners’
fitness is proportional to their hashing rate. In an attempt to overcome these
limitations, some alternatives for implementing a requirement like (2) have been
proposed over time, concerning both the underlying function used to compute
D and the way 7 is chosen. These alternatives were introduced mainly in an
attempt to mitigate threats deriving from accumulators of hashing power. A
single party, or a pool of them # could indeed invest in hardware equipment
to obtain a substantial percentage of the total hashing power, and with such
power they could succeed in double-spending by reversing the recent blockchain
history. Or alternatively they could carry out a denial-of-service by refusing to
include transactions in the block they generate, unless perhaps the transactions
useful to their own purposes.
Although only a percentage greater than 50% of the total hashpower allows
an attacker to get the mathematical certainty in subverting sooner or later the
system [3], also attackers with a substantial minority of the total hashpower can
plausibly attempt double-spending and denial-of-service attacks [3, 42].

Litecoin [43] makes use of a variant of Bitcoin’s proof-of-work that employs
sCrypt [44] instead of SHA-256. sCrypt was originally designed as an alterna-
tive to the iterative use of pseudo-random functions like MD5 [45] or DES [46]
for deriving a key from a password/passphrase. Indeed sCrypt’s goal was to
implement a pseudo-random function ¥ which is also sequential memory-hard,
i.e. such that:

e the fastest sequential algorithm for computing ¥ requires an amount of
memory roughly proportional to the number of operations to be per-
formed;

e it is impossible for a parallel algorithm to asymptotically achieve a signif-
icantly lower cost in terms of both $ and secs than the fastest sequential
algorithm.

This feature is used in Litecoin and a bunch of other cryptocurrencies [22] to

4Since the threshold T exponentially decreases over time, with the consequent introduction
of the extraNonce field in generation transactions, mining has become a very difficult problem
which at current time is typically solved by mining pools, where a bunch of miners share work
and rewards. Mining pools use higher thresholds than the target threshold 7 to see how much
work miners are doing. For example, if mining requires a digest having 15 leading zeros, then
the mining pool can ask for digests having (at least) 10 leading zeros. Each partial solution
proves that the miner is working hard on the problem, and gives the miner a share in the
final reward, if any. Eventually one of these partial solutions could get the target number of
leading zeros, therefore successfully mining the block and winning the reward for the pool.
The reward is then split basing on the fraction of total shares that each miner counts, and
the pool operator takes a small percentage for her work [38].
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Figure 4: Given the digests of the current and previous blocks, the act of mining
the current block is a process which consists in finding a nonce so that the value
returned by a suitable pricing function is less than a parametrizable threshold.
The output consisting in the association between the digests and the nonce
actually represents what is indicated with “proof-of-work” or similar terms (e.g.
“proof-of-stake”, ) in the literature.

hinder the use of specialized hardware, thus avoiding the side effects of the rapid
shift in mining technologies observed for Bitcoin, as described in §4.

Cryptocurrencies that do not make use of Bitcoin’s proof-of-work - or its
variants - commonly rely on the proof-of-stake approach to mining [47]. These
are mechanisms that extend the chances in mining new blocks to the stake-
holders of the system, with the aim to get a counterweight to hashpower. In a
proof-of-stake mechanism the threshold 7 is indeed proportional to the number
of coins owned by the miner at current time, meaning that a miner which owns
e.g. 100 coins is 10 times more likely to create the new block than a miner
which owns 10 coins. By itself this would result in “coin pile issue” similar to
the hashing power trouble that a proof-of-stake is intended to mitigate, thus
these mechanisms also include some other parameters to compensate such bad
behaviour. For example, in the PeerCoin system 7 is proportional to coin age, a
number derived from the product of the number of coins owned times the num-
ber of days the coins have been held. An important difference here is that the
hashing is timed in one digest calculation per second, and not more frequently;
moreover it is possible to calculate it only once for each unspent coin in the wal-
let [47]. In this way miners are not motivated in accumulating hashing power.
However, this comes at the price of a (loose) time synchronization among nodes,
which was presumably avoided in Bitcoin to overcome the difficulties of getting
a trusted “global clock” without a Time-Stamping Authority [48].

We conclude this section by osserving that, at least at our knowledge, all
the mining approaches proposed so far can be described as particular instances
of the workflow depicted in Figure 4, here described.
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Pricing functions were introduced in [40], where a such function II: X xY — R
can be informally defined as satisfying the following properties:

1. Given z € X and t € R, it is moderately hard to findy € Y : I(z,y) < ¢;
2. for any (z,y) € X x Y it is easy to compute II(z,y);

3. II is not amenable to amortization: for any finite set x1,...,2;, € X of
input values and corresponding threshold values 71, ..., 7, € R, the cost of
finding y1,...,ym € Y with II(x;,y;) < t; on the whole set is comparable
to the total cost of finding y; : H(z;,y;) < t; from scratch for each (x;,t;);

Requirement (3) means that there are no “shortcuts” in finding y : Il(x,y) <t
for multiple inputs and thresholds, also if these inputs and thresholds are strictly
related. In other words, the solution y of the search problem related to IT behaves
like a random variable in Y.

The sense of the workflow of Figure 4 is as follows: through a suitable
pricing function IT and a tunable difficulty threshold 7, a miner node M can give
corroborate evidence to its peers that it found a solution to a moderately hard
computational problem, and that its effort involved processing of the previous
block in the blockchain alongside with the current transactions.

3.6 Blockchain updating

As we have described in §3.2.2 and illustrated through Figure 1, the chaining
of a single transaction results in a quite complex graph, where a single input
may branch in multiple transaction outputs, and multiple inputs may merge in
a single transaction output. Things go better when transactions are assembled
in blocks and these blocks are chained together to form the blockchain (see
883.4, 3.5). The blockchain has indeed a tree data structure: the genesis block
is its root, each block is a child of the block it references, and it may be the
case that a given block has more than one child, thus resulting in one or more
branches in the chain. That sounds odd, since a single coherent history of
transactions is desired, and each branch represents one different version of such
history. However, it is consequence of the approach chosen to add a new block
in current blockchain-based systems. Following [3], indeed, all these systems
adopt an implicitly-defined majority decision, consisting in the fact that (honest)
miners will spend their next mining work on the “longest chain”, that is the
chain of blocks with the most mining effort in it. Such effort is measured as the
sum of the difficulties that were required to mine all the blocks composing the
chain [49]. In proof-of-work based systems, for example, the longest chain is the
one with the longest string got by concatenating the “leading zeros” of all the
proofs of work that were required to build the chain (see §3.5).

In order to better understand the process of updating a blockchain, it may
be worth pointing out here the following circumstances.

5This is a frequently-used but misleading term, as it will be clear from the sequel.
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e The majority decision mechanism described above is not mandatory, and
the choice of the block to be referenced in the chain is actually left to each
single miner. A miner M is just encouraged to adehere to the mechanism,
on the basis of the fact that the longer is the chain linked to M’s new
mined block Bj;, the more are the chances that M gets a reward for the
mining activity spent on Bjs. This design was presumably choosen in [3]
because it is really difficult to guarantee and ascertain the correctness of
peers local processing, but — as we are going to discuss shortly — it is the
root cause of the double-spending threat.

e The “longest chain” is not actually unique. Indeed, it may be the case
that the same mining effort (e.g. the total number of “leading zeros”)
corresponds to two or more chains that differs for some block and/or the
block order. Thus, also assuming that all the miners follow the majority
decision mechanism, branches are possible.

e Each branch must be internally consistent and can never include two con-
flicting transactions; however, branches do not need to be consistent with
one another, and one branch can include a transaction which contradicts
a transaction in another branch.

e The blocks that will be incorporated in the blockchain are determined
by the upshot of a sequence of mining activities and, ultimately, by the
relative computing powers of all miners working at that section of the
blockchain. As we will detail in §4, at least in the case of Bitcoin, this has
given rise to a rude mining-hardware race which undermines the confidence
of users in the cryptocurrency and its stability on the market.

Branching in a blockchain may result from the fact that different, honest miners
are in temporary disagreement about which chain should be considered valid,
as they found out different “longest chain”. That could happen, for example,
because of network latencies or network outages.

However, secretly minining a branch is at the core of the double-spending attack.
Indeed, in its essence a successful such attack consists in what follows. The
attacker P broadcasts to the network a transaction Tp in favour of the seller
R. Then P mines a block which builds on the latest block B; before the one
that eventually will contain Tp, and which contains a conflicting transaction
Tp, ie. a transaction which pays the amount of Tp to another party than
R (maybe P herself). P waits until R is confident in her payment and sends
her the merchandise. In the meantime, P uses the secretly mined block to
extend the chain in order to get a branch longer than the one known by the
network. Finally, she release the secret branch to the network, thus overriding
the payment in favour of R.

A main concept concerning the confidence that a seller can put in a payment
in his favour is that of confirmations of a transaction. A transaction is said to
have ¢ confirmations if it is included in a block which is part of the valid chain,
and there are ¢ blocks in the path from that block to the leaf of the chain,
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inclusive [50]. Intuitively, the more confirmations a transaction has the more
likely that it will remain in the chain permanently. Nakamoto’s paper [3] outlines
the number of confirmations versus the relative hashpower of an attacker P,
such that the probability of success of P in a double-spending attack is less than
0.1%. From those calculations, it follows that if P has less than 10% of the total
hashing power of the network, then ¢ = 6 confirmations are sufficient. However,
if P has a greater percentage of the hashing power, then an increasingly bigger
number ¢ of confirmations is required. For example, if P has 30% of the total
hashing power, then ¢ = 24 confirmations are required in order to limit the
chances of a double-spending attack to less than 1 in 1000. If P has more than
50% of the total hashpower, then sooner or later she will inevitably succeed in
a double-spending attack; this is know as the “561% attack”.

4 Computational aspects

One important feature in the consensus mechanism implemented in blockchain-
based systems is the unpredictability of the miner in charge of recording the
next transaction block. First and foremost, this is useful to prevent frauds:
with some degree of certainty, and for every single recording, no one should
know in advance who would be the peer entitled to record the transaction. If
that happened, a malicious user could do a denial-of-service attack against such
peer to defraud her of the prize.

At the same time, that unpredictability results in an incentive for peers in doing
mining, which is vital for a blockchain-based system. Although there are nodes
that have some advantage with respect to others in finding the nonce, which
ultimately depends on the specific mining approach in use, even the less fitted
node has some chance of finding it (see §4.1).

Another important feature is the time-lapse mechanism implemented through
the average time that the miners as a whole spend in mining a new block. In-
deed, such average time is somewhat predetermined in each blockchain-based
system, and this turns out in a synchronization mechanism for updating the
blockchain on every single node in the system.

With this design in mind, and after fixing a specific mining approach, we
want to discuss the following two issues: (i) the measure of performance in
mining, and (ii) the way the system tunes the difficulty of mining in order to
get the preset time-lapse for the blockchain update. In §4.1 we will analyze
these two concepts to understand how computation is involved in the Bitcoin
blockchain implementation.

4.1 Difficulty and performance in Bitcoin

The average time that the miners as a whole spend in searching the nonce N
that solves (2) before succeeding was predetermined by the Bitcoin creators as
about ¢ = 10 minutes. This means that the system should create a new block in
the blockchain after spending 10 minutes on average in searching for a correct
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digest, and at the same time establishing (almost randomly) the peer entitled
for the block recording.
Since this is a trial and error algorithm, the more peers in the system participate
to the race with a fixed 7, the shorter is the average time to find a correct
solution. But we know that ¢ = 10 minutes is the predetermined time that the
system should take to find a solution, and on average it should be met. This
looks like a soft real-time system [51], but we think it is not, as the time expected
to have a result should not significantly exceed 10 minutes, but it should neither
be less than that.
When actual ¢ < 10 repeatedly for a number of blocks, then the system increases
the difficulty to make the interval longer, that means the threshold 7 in (2) must
be lower for the next blocks. As we told in §3.5, lowering the threshold of one
single level in Bitcoin corresponds to add one leading zero to the Hex string
encoding the previous threshold value or, equivalently, to shift its single “1”
digit from position z to z + 1. In turn, it can be shown that — at least under
the assumption that the hash function is well balanced® [52] and z > 10 — the
above shift results in a proof of work which is probabilistically harder than the
previous one by a factor very close to 216 = 65536.

In Figure 5 we can see how the implemented difficulty increased over the
last two years. This is referable to two distinct facts:

e the growth in the number of competitors to the race, due to the diffusion
of the currency and to the prize offered;

e the growth of the performance of the single computational resource, due
to the usage of better hardware.

But what is the parameter used for performance measuring in this context?
The SHA-256 hash function does not need all the features available in a complex
Instruction Set Architecture, as the ones equipped in general purpose comput-
ers. Therefore a new appropriate parameter for evaluating the performance of
an hashing system has been introduced: the hash-rate, currently measured in
GigaHash per second (GH/s).

In Figure 6 we can notice that the global hash-rate of Bitcoin is oscillating in
a daily order, depending mainly on the number of participating clients in the
global competition, while the trending growth is due to improving computing
systems.

But where does this improvement lie in the Bitcoin mining systems?

As we have shown, the solution to our problem can be found through a trial and
error algorithm. This immediately leads to the probabilistic observation that
the more calculating units the client has, the better chances to win the race.
In fact, in the short lifetime of this cryptocurrency, we have seen a shift in
terms of technologies used for the computing resources in the mining competi-
tion, from single core to multicores, then GPUs, and FPGAs, to end up with
ASICs.

SRoughly speaking, in a well balanced hash function each output has about the same
number of pre-images.
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Figure 5: Difficulty of Bitcoin mining in the last two years. It represent the
difficulty to find a nonce for a new block when compared to the easiest it can
ever be.
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Figure 6: Estimated global hash-rate of the Bitcoin system in the last two years.
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Technology | Device Mhash/s | W $ Mhash/s/$ | Mhash/J
CPU - Intel Core i7 3930k 66.6 130 670 0.10 0.51

CPU - AMD | 4x Opteron 6174 115 320 | 220 0.52 0.36
Sl(;glrocessor Xeon Phi 5100 140 225 | 4000 | 0.03 0.62

GPU - Nvidia | Tesla S2070 749.23 900 3000 0.25 0.83

GPU - AMD -

(ATT) 5870x6 2568 1200 | 300 8.56 2.14
FPGA Butterflylabs Mini Rig 25200 1250 | 15295 | 1.64 20.16
ASIC AntMiner S5 1155000 590 370 3121 1957
ASIC Spondooliestech SP35 Yukon | 5500000 3650 | 2235 | 2460 1506

Table 2: Illustrative comparison of different hashing technologies [53, 54].
Mhash/s stands for million hashes per second. W is for watt. $ is the estimated
cost at the time when the device has been put on the market. Mhash/s/$ is the
performance per dollar. Mhash/J is the throughput per watt.

This is the effect of the quest for the correct solution, or - using a nostalgic
pleasant term - the Nonce Rush. Anything looking like something useless is
sacrificed in the name of the hash-rate. Multicores had a short life since they
were not efficient horse carriages. GPUs had a fancy number of lightweight
cores working well (with differences due to the hardware implementation of the
instructions) but soon they lost appeal. In fact all these technologies seemed like
wasted money since someone had the idea to build specific hardware to compute
uniquely the double SHA-256 hash function required to check (2). It resulted
to be very fast with FPGAs, and incredibly fast with the introduction of ASICs.

As we can see in Table 2, the convenience of using specialized technologies

does not lie just in the computing speed, but also in device cost and power
consumption. In fact we have to remark again that Bitcoin mining is a compu-
tational race based on casualty and attempts. The key to win virtual coins -
which are actually usable to buy real goods - is to have the fastest and overall
less expensive computing units. Spending thousands dollars without improving
the chances to win the race is a terrible investment.
At the same time, if Ms. Smith would decide to make a good investment today
by buying the fastest ASIC available, the repayment plan could not be success-
fully accomplished: in fact a new technology could arise and a certain number
of investors could decide to rely on it, making Ms. Smith hardware obsolete and
unfit to win any competition.

4.2 Making it useful

While some supporter of Bitcoin argue that the costs of the current mining
system is a fraction of the costs to maintain the real material currencies, some
alternative initiatives are spreading.

The underlying idea consists in implementing a proof-of-work system while do-
ing some useful calculations.
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An example of such a different proof-of-work algorithm is proposed in Prime-
coin [55], where the computing time is used to find prime numbers chains known
as Cunningham chains and bi-twin chains, both of high scientific interest. This
proof-of-work has the property of being efficiently verifiable, through the Fermat
test [56] of base 2 together with Euler-Lagrange-Lifchitz test [57], which verify
probable primality for the prime chains. Also difficulty can be implemented
using the remainder of Fermat test, so that an approximately linear continuous
difficulty curve can be constructed for a given prime chain length.

Some developers proposed to use distributed computing tools like folding@home
or SETI@home for the currency mining, so that the user computations could
be somewhat useful in the cure of protein misfolding diseases or in the search
for signals of alien intelligence in the universe.

However the point is that a consensus-based blockchain needs an efficiently ver-
ifiable proof-of-work, like SHA-256, but folding@home and SETI@home do not
have such a property. Since now, the participants in the protein folding and
SETI networks were volunteers, with probably no intentions other than actu-
ally help the goal of the project. If tied to a currency mining, these networks
could be weakened by participants searching for profits, not bothered with the
actual computations. Instead those miners could be prone to provide fake data
that has no value to the humanitarian goals, but that is likely indistinguishable
from a genuine output.

Actually there are working implementations of cryptocurrency connected to a
protein folding network (CureCoin [58]) and to the BOINC distributed scientific
computing network (Gridcoin [59]). In these currencies the research networks
are not used for a decentralized consensus, but rather interconnected to another
proof-of-work or proof-of-stake system to allot a credit based on the research
work done. Let’s take CureCoin: in this system the security of the currency is
entrusted by nodes running SHA-256 like in Bitcoin, but there is a percentage
of the daily mined CureCoins that are granted to the foldinghome participants
in the system. Indeed those involved in the research job get 76% of the total
coins, while blockchain maintainers get another 19%. Finally there is also a
sort of development taz: 2% of the total mined coins are distributed to people
who donated to project development, while the remaining 3% is reserved to
Curecoin developers, and will be used for compensating development costs and
for community care. Let us say this would be a fair reward scheme, but it is
significantly more centralized than the original Bitcoin one, and probably less
resistant to fraud attacks.

A different approach is used in Gridcoin: the consensus is granted with a proof-
of-stake, but the amount credited is based on the effective work done in the
BOINC network. The interesting point here is that the mining mechanism in-
volves some concepts from Bitcoin, like Network Average which is similar to
difficulty in the proof-of-work, but also implements a complex rewarding mech-
anism which adds layers of interactions between servers and clients. Its finality
would be the fairness of rewarding with some degree of fraud resistance, but
with several actors involved, the system could overall expose more weaknesses.
Generally speaking, when some user talks about a material currency, she does
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not really care on the costs incurred in the maintenance of working currency,
or better she is interested in her direct costs (interest rates, etc.). On the other
hand, when talking about mining and making computing power available, some
user would prefer to give her hardware to some higher purpose than to a con-
sensus mechanism.

Finally in our view the Nonce Rush implemented in Bitcoin does not have
any sense when thinking of a blockchain uncoupled from a currency, as it implies
an enormous waste of computing power for mostly useless and costly calcula-
tions.

5 Conclusions

Nowadays Bitcoin is at the highest international interest because of the prospects
both on opportunities and risks. At the time of writing, it has an estimated
market capitalization of about 4 billion USD [21], while there is a pletora of
alternative cryptocurrencies that try to emerge proposing their specific charac-
teristics. If not enough, a new generation of systems relying on concepts and
technologies inspired by those of Bitcoin are emerging. All this makes the focus
on the features of the blockchain-based systems extremely interesting. There
are a number of advantages inherently embedded in these systems. First of all
they generally exclude any central authority, avoiding in this way a single point
of attack. Besides that, they represent an attempt to coniugate both transac-
tor’s and recipient’s privacy with trusted, publicly verifiable transations. All
this is possible thanks to protocols that combine different cryptographic prim-
itives and schemes into innovative designs, and which in turn pave the way to
new very interesting applications with an high impact on society. When talking
about currencies, even more advantages emerge. For example merchants are
motivated to accept cryptocurrencies because fees are lower than the 2% — 3%
typically imposed by credit card processors, and futhermore these fees are usu-
ally self-imposed and paid by the purchaser, not the vendor.

But at the same time some weaknesses are evident. If the theory behind
dependable and secure computing is quite young, as it has only been developed
at the beginning of this century [23], then the theory on cryptocurrencies is in
its infancy, and no one knows if important issues will arise in the near future.
Actually at present time blockchain-based systems can be seen as “moving tar-
gets”, above all Bitcoin. Several security threats exist (e.g. 51% attack, other
double spending attacks, wallet theft) and from time to time some new vulner-
ability is spotted, even if the current practice with these system (Bitcoin, first
of all) is encouraging and it indicates that there is a successful effort to face
attacks or recover from critical mishaps [60].

But some other flaws impend over a broader diffusion of cryptocurrencies or
other blockchain-based systems. First of all, the good practice of waiting for
transaction confirmations sets serious limits to the use of Bitcoin (and other
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similar cryptocurrencies) in “main street” stores, restricting its usage range pri-
marily to on-line vendors with postponed delivery services. Another important
criticism is about mining costs. Indeed the mining problem is actually a kind
of artificial puzzle of no practical concern (besides, of course, the existence of
the network), which requires an increasing amount of computational resources
over the time. Current alternatives to the Bitcoin proof-of-work can mitigate
in a way the Nonce Rush escalation experienced in these last few years (see
§83.5 and 4.1), but all the blockchain-based system to date use a considerable
amount of electric energy in order to perform computing tasks at the sole scope
of mining. Some statistics on Bitcoin report that - at the time of writing - the
network hashrate would be equivalent to 6809823.32 petaflops, which is more
than 200000 times China’s Tianhe-2, the fastest supercomputer in the world
[61]. Of course such comparison is not significant in term of the actual abil-
ity to solve computational problems, as Bitcoin’s mining does not rely - if not
perhaps marginally - on floating point operations, nor are its hash calculations
used to solve any problem beside that of mining. But it gives an idea of the
tremendous amount of operational energy for these kind of networks when de-
ployed on a large scale. Some examples of useful proof-of-work calculations and
mining exist, but are limited to specific problems or rely on complex and maybe
vulnerable protocols.

In a future work we will show that the use of a workflow like that depicted
in Figure 4 is actually a main misconception in blockchain-based systems. We
also intend to introduce an alternative system where a computational problem
of “public interest” can be solved decoupling it from the system management,
as well as from the (optional) currency management and mining. This approach
aims to be a more efficient solution when compared to the other currently avail-
able systems.
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